Interactive multiple objective programming using Tchebycheff programs and artificial neural networks
نویسندگان
چکیده
A new interactive multiple objective programming procedure is developed that combines the strengths of the Interactive Weighted Tchebycheff Procedure (Steuer and Choo 1983) and the Interactive FFANN Procedure (Sun, Stam and Steuer 1993). In this new procedure, nondominated trial solutions are generated by solving Augmented Weighted Tchebycheff Programs (Steuer 1986), based on which the decision maker articulates his/her preference information by assigning "values" to these solutions or by making pairwise comparisons. The elicited preference information is used to train a feed-forward artificial neural network, which in turn is used to screen new trial solutions for presentation to decision maker in the next iteration. Computational results are reported, comparing the current procedure with the Interactive Weighted Tchebycheff Procedure and the Interactive FFANN Procedure. The results show that this new procedure yields good quality solutions.
منابع مشابه
HYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملEstimation of Discharge over the Submerged Compound Sharp-Crested Weir using Artificial Neural Networks and Genetic Programming
Truncated sharp crested weirs are used to measure flow rate and control upstream water surface in irrigation canals and laboratory flumes. The main advantages of such weirs are ease of construction and capability of measuring a wide range of flows with sufficient accuracy. Artificial neural networks (ANNs) and genetic programming (GP) have recently been used for estimation of hydraulic data. In...
متن کاملRobust Optimization for Multiobjective Programming Problems with Imprecise Information
A robust optimization approach is proposed for generating nondominated robust solutions for multiobjective linear programming problems with imprecise coefficients in the objective functions and constraints. Robust optimization is used in dealing with impreciseness while an interactive procedure is used in eliciting preference information from the decision maker and in making tradeoffs among the...
متن کاملRobust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection
A multiobjective binary integer programming model for R&D project portfolio selection with competing objectives is developed when problem coefficients in both objective functions and constraints are uncertain. Robust optimization is used in dealing with uncertainty while an interactive procedure is used in making tradeoffs among the multiple objectives. Robust nondominated solutions are generat...
متن کاملPrediction of Blasting Cost in Limestone Mines Using Gene Expression Programming Model and Artificial Neural Networks
The use of blasting cost (BC) prediction to achieve optimal fragmentation is necessary in order to control the adverse consequences of blasting such as fly rock, ground vibration, and air blast in open-pit mines. In this research work, BC is predicted through collecting 146 blasting data from six limestone mines in Iran using the artificial neural networks (ANNs), gene expression programming (G...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computers & OR
دوره 27 شماره
صفحات -
تاریخ انتشار 2000